Stochastic 2-D Navier-Stokes Equation
نویسندگان
چکیده
In this paper we prove the existence and uniqueness of strong solutions for the stochastic Navier-Stokes equation in bounded and unbounded domains. These solutions are stochastic analogs of the classical Lions-Prodi solutions to the deterministic Navier-Stokes equation. Local monotonicity of the nonlinearity is exploited to obtain the solutions in a given probability space and this significantly improves the earlier techniques for obtaining strong solutions, which depended on pathwise solutions to the Navier-Stokes martingale problem where the probability space is also obtained as a part of the solution.
منابع مشابه
Some examples of absolute continuity of measures in stochastic fluid dynamics
A non linear Itô equation in a Hilbert space is studied by means of Girsanov theorem. We consider a non linearity of polynomial growth in suitable norms, including that of quadratic type which appears in the Kuramoto–Sivashinsky equation and in the Navier– Stokes equation. We prove that Girsanov theorem holds for the 1-dimensional stochastic Kuramoto–Sivashinsky equation and for a modification ...
متن کاملInternal Stabilization by Noise of the Navier--Stokes Equation
One shows that the Navier-Stokes equation in O⊂Rd, d = 2, 3, around an unstable equilibrium solution is exponentially stabilizable in probability by an internal noise controller V (t, ξ) = ∑N i=1 Vi(t)ψi(ξ)β̇i(t), ξ ∈ O, where {βi}i=1 are independent Brownian motions and {ψi}i=1 is a system of functions on O with support in an arbitrary open subset O0 ⊂ O. The stochastic control input {Vi}i=1 is...
متن کاملOn Stochastic Navier-Stokes Equation Driven by Stationary White Noise
We consider an unbiased approximation of stochastic Navier-Stokes equation driven by spatial white noise. This perturbation is unbiased in that the expectation of a solution of the perturbed equation solves the deterministic Navier-Stokes equation. The nonlinear term can be characterized as the highest stochastic order approximation of the original nonlinear term u∇u. We investigate the analyti...
متن کاملSPDE in Hilbert Space with Locally Monotone Coefficients
The aim of this paper is to extend the usual framework of SPDE with monotone coefficients to include a large class of cases with merely locally monotone coefficients. This new framework is conceptually not more involved than the classical one, but includes many more fundamental examples not included previously. Thus our main result can be applied to various types of SPDEs such as stochastic rea...
متن کاملAn Introduction to Stochastic PDEs
2 Some Motivating Examples 2 2.1 A model for a random string (polymer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 The stochastic Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 The stochastic heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 What have we learned? . . . . . . . . . . . . . . . . . . . . . ...
متن کامل